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Physics-inspired algorithms as the Dłotko–Specogna (DS) has been shown to be extremely fast to perform the topological pre-
processing required to solve challenging eddy current problems formulated by using a magnetic scalar potential in the insulator. Yet,
they produce efficiently a set of lazy generators instead of a regular cohomology basis. A regular cohomology basis is favourable over
lazy generators given that it reduces the number of unknowns in the linear system and also produces a full-rank system matrix.

This paper extends the DS algorithm in such a way that it provides a regular basis of the first cohomology group as output
at a negligible computational cost. The obtained speedup with respect to the best alternative algorithm is more than two order
of magnitudes on a challenging benchmark problem, demonstrating the potential impact of the proposed contribution in the low-
frequency computational electromagnetics community.

Index Terms—eddy currents, magnetic scalar potential, cuts, cohomology, first de Rham cohomology group

I. INTRODUCTION

LET US assume that the computational domain D is a
topologically trivial 3-manifold with boundary embedded

in R3. D is covered with a cell complex K = Ka ∪ Kc,
where Ka and Kc are two sub-complexes of K representing
the insulating and conducting regions, respectively.

This contribution introduces an important extension in the
Dłotko–Specogna (DS) algorithm [1], [2] to efficiently com-
pute a regular cohomology H1(Ka) basis of the insulating
domain in negligible time. In order to introduce the novel
algorithm we start by recalling the DS algorithm [1]:

1) The first cohomology group generators of the discrete
surface S = Kc ∩Ka (see Fig. 1a) are computed with a
linear time combinatorial algorithm, see [1].

2) The Hiptmair–Ostrowski (HO) technique [3] adapted as
described in [1] is used to construct a set of cohomology
generators on S such that the dual on S of half of them
bound inside Kc and the remaining ones whose dual
bound in Ka. Only the former half of generators are
used in what follows.

3) Thinned currents are found by pre-multiplying the half
generators of S by the incidence matrix Cc between face
and edge pairs [1] restricted to Kc. The support of the
thinned current of a toric conductor is represented in Fig.
1a by dark faces.

4) Finally, a vectorialized version of the Extended Spanning
Tree Technique (ESTT) algorithm [4] is run on the whole
complex K for all thinned currents at once. The ESTT
algorithm is a general version of the Webb–Forghani
(WF) iterative algorithm [5] to obtain a discrete field
whose discrete curl is assigned (in our case to the curl of
the thinned current). The output of the ESTT restricted to
Ka form the required cohomology generators (Fig. 1d).

The dual of the thinned current forms a 1-cycle c̃ on the
dual complex, see the thick edges in Fig. 1b. An important
interpretation that is going to be used later is that the ESTT is
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Fig. 1. (a) The thick edges represent the support of a cohomology generator of
the boundary of Kc, a solid 2-torus. The dark triangles represent the support
of the thinned current. (b) The dual edges which are dual to thinned current
faces form a 1-cycle c̃ on the dual complex. (c) This dual 1-cycle c̃ is the
boundary of a 2-chain s̃ on the dual complex. (d) s̃, restricted to Ka, is the
dual of the cohomology generator of Ka.

computing a discrete surface s̃ on the dual complex (possibly
self-intersecting) having c̃ as boundary, see Fig. 1c.

The HO technique finds the required change of cohomology
basis by computing the null-space of a small and sparse matrix
(the dimension is 2g × 2g, g being the genus of S) [3]. The
bottleneck of this process is the computation of the entries of
this matrix, which are all the mutual linking numbers between
the dual of the cohomology generators of S and the dual of
the thinned currents (c̃ in Fig. 1b). In the proposed benchmark
problem g is 1621, which means that more than 10 millions
of linking numbers have to be computed. This yields to an
unsurmountable bottleneck due to the HO technique.

This is why we proposed in the past to skip step 2 and use
all generators of S instead half of them [1], [2] in the following
steps. In this case, the generators are called lazy: they span the
needed cohomology group, but contain additional, dependent
elements. Yet, a standard cohomology basis is attractive given
that it reduces the number of unknowns in the linear system
and also produces a full-rank system matrix. For this purpose,
we introduce in this contribution a technique to remove this
obstruction and thus speed up the computation of a regular
cohomology basis.
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Fig. 2. (a) The geometry of the considered conductive structures of an ITER-
like nuclear fusion reactor. (b) A 1/18 of the geometry.

II. LEAN DS ALGORITHM

The novel idea proposed in this contribution allows to elim-
inate the bottleneck in the linking number matrix computation
by introducing a radically novel way to compute it. In fact, the
linking number matrix may be computed (almost) for free, i.e.
without the costly integrations used in [3], [1]. The lean DS
algorithm is briefly described:

1) The first homology group generators of the discrete
surface S = Kc ∩Ka (see Fig. 1a) are computed with a
linear time combinatorial algorithm.

2) Thinned currents are found easily from all homology
generators of S by using a technique similar to the one
described in [6].

3) ESTT is run for all thinned currents.
4) Here is the key idea of this contribution. The linking

number between the discrete surface 1-cycles and the
same cycles pushed inside Kc (i.e. the dual of the thinned
currents) may be evaluated as the number of times the
cycles pierce the dual discrete surfaces produced by
the ESTT. This is due to a reinterpretation of linking
numbers (see for example [7]). This, in turn, is realized in
our setting simply with a sparse dot product between the
two sparse arrays that represent the homology generator
of S and the dual discrete surface.

5) The adapted HO technique is applied. The change of
basis found in the previous step is applied to the output
of the ESTT that, once restricted to Ka, form the required
cohomology generators.

III. NUMERICAL RESULTS

The authors have implemented in C++ the novel algorithm
presented in this contribution inside the TOPOPROCESSOR code
[8]. To demonstrate the performance of the novel DS algorithm
we perform the topological preprocessing in the complement
of the conductive structures of an ITER-like nuclear fusion
device (see Fig. 2a) with respect to a box which represents
the insulating region. The conductor which is considered in
the benchmark is formed by gluing together 18 structures as
the one in Fig. 2b. The number of mesh elements and the
topological features render the topological pre-processing for
this benchmark particularly challenging. In fact, we expect to

TABLE I
NUCLEAR FUSION REACTOR BENCHMARK

Mesh
Number of tetrahedra in K 26 648 351
Number of tetrahedra in Ka 13 225 740
Meshing time GMSH [s] 1061
tGMSH [s] 14 933
tTP lazy [s] 202
tTP regular [s] 209

extract 1621 generators of the first cohomology group of the
insulating region, which corresponds to 3242 lazy generators.
In below, tTP denotes the total wall time (in seconds) needed
by TOPOPROCESSOR code to compute a lazy and a regular
cohomology basis, whereas tGMSH represents the total time
required by the software GMSH [9], which is an efficient
implementation of the standard paradigm based on reducing the
complex and computing the Smith Normal Form of the reduced
matrix. All computations are performed on a workstation with
a 12Core-Xeon E5-2687Wv4 processor equipped with 128 Gb
of RAM. It is also interesting to note that GMSH, also has a
higher memory consumption, roughly 60 Gb, while TOPOPRO-
CESSOR would successfully terminate without swapping on a
machine with as few as 20 Gb of RAM. TOPOPROCESSOR
code has been able to compute all generators in about 3 minutes
of total computing time, whereas GMSH terminated after more
than four hours on the same workstation, see details on the
mesh and on timings in Tab. I.

The obtained speedup of nearly two orders of magnitude
with respect to the state-of-the-art competitor software well
motivates in our opinion the interest in the algorithm proposed
in this paper. In particular, we remark that the topological pre-
processing is a small fraction of meshing time in the case of
TOPOPROCESSOR, whereas it ends up being the bottleneck of
the whole simulation chain in the case of GMSH.
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